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Abstract

A coordinate-space multislice description of the scat-
tering of high-energy electrons is constructed from
consecutions of differential operators acting upon
atomic potentials. It is used to find expressions for the
intensity distribution in high-resolution electron-micro-
scope images of crystals whose atoms are periodically
displaced relative to a reference lattice according to a
modulation wave. Both static correlated displacements,
such as occur in modulated structures, and time-
dependent correlated displacements, as are generated
by phonons, are considered. Two aspects of the image
are examined in detail; its translational symmetry and its
dependence upon the correlations between the atomic
displacements. It is shown that the intensity distribution
due to scattering from static correlated displacements
has the translational symmetry of the modulated
structure in that projection, as determined by the
component of the modulation wavevector perpendicular
to the incident beam, whereas that due to scattering
from phonons has the translational symmetry of the
reference lattice in that projection. The former is a
consequence of higher-order Laue-zone interactions.
The intensity distribution due to scattering from static
displacements depends upon the absolute phase of the
displacement at each scattering atomic site whereas that
due to scattering from phonons depends only upon the
relative phase of the displacements between different
scattering sites, both within the same atomic column
parallel to the beam and in adjacent columns. In both
cases, the influence of the component of the correlation
wavevector parallel to the incident beam is different to
that perpendicular to the beam; the former affects the
intensity mostly at the atomic sites whilst the latter
affects the intensity mostly between the atomic sites. It is
also observed that, as a consequence of the periodic
nature of the polarization-vector function, the inter-
ference terms are small, both relative to the non-
interference term and in an absolute sense, particularly
for phonon scattering. For this reason, the contribution
to the image due to scattering from correlated atomic
displacements will have greater and sharper atomic
contrast than that due to scattering from the reference
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structure without displacements. In addition, this
component of the intensity distribution will not exhibit
strong contrast reversal when the objective-lens defocus
is changed.

1. Introduction

Crystal structures are conveniently described by refer-
ence to an idealized lattice with three-dimensional
space-group symmetry. The actual structure can then be
characterized in terms of displacements of atoms from
their reference lattice site. As a consequence of inter-
atomic forces, atomic displacements tend to be corre-
lated with those of their neighbours over some range.
Phonons and modulated structures are examples of
long-range correlated atomic displacements. In each
case, the atoms of the structure are periodically
displaced from their reference site according to a
modulation wave. In the first case, the wave is propa-
gating, in the second it is not. Either way, the config-
uration of atoms at any instant will not, in general, have
the three-dimensional space-group symmetry of the
reference lattice. What then is the translational
symmetry of the high-resolution electron-microscope
image of such a crystal? This is the principal question
addressed in this paper.

It is important in general to understand how the wave
function of an incident high-energy electron is influ-
enced by its interaction with such correlated atomic
displacements and how this in turn affects the electron
diffraction pattern and image of a crystal. This problem
has been tackled for the case of phonons in a variety of
ways, with varying degrees of approximation both in the
scattering process and in the crystal potential. (An
overview of these methods is given by Fanidis et al,
1992). In this paper, it is the specific purpose to examine
the spatial periodicity of high-resolution electron-
microscope (HREM) images of crystals with both static
and dynamic correlated atomic displacements and to
investigate the extent to which the correlations between
displaced atoms affect the intensity distribution of this
image.
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To this end, a coordinate-space multislice description
of electron scattering is constructed in which the exit
wave function is expressed as sums of noncommuting
‘products’ of differential operators and atomic poten-
tials. The contribution of scattering from each atomic
potential in the crystal is thus exhibited explicitly, so that
the fomulation lends itself to an assessment of the effect
upon the image of a displaced atom at a given site and of
correlations between displaced atoms. Expressions can
be constructed for the intensity distribution in the lattice
image due to dynamical scattering from displaced as well
as non-displaced atoms, or, in other words, due to
multiple ‘diffuse’ as well as multiple ‘Bragg’ scattering,
and are written out explicitly for the case of single and
double-diffuse scattering. They are, however, designed
only to provide physical insight and not for numerical
convenience.

The analysis is set out as follows. Firstly, a conven-
tional and general description of the potential of a
crystal with correlated atomic displacements, either
static or dynamic, is defined in §2. Then, the independent
task of constructing a dynamical description of the
forward scattering of fast electrons is dealt with in §3.
Here the multislice solution is recast into an uncon-
ventional coordinate-space representation that does not
involve the integral operation of convolution. This
formulation is then used in §4 to find unabridged
expressions for the intensity distribution at the image
plane due to scattering from a crystal with static or
dynamic correlated atomic displacements (as defined in
§2). From these expressions, the translational symmetry
of the image in each case is determined (§4) and the
influence of the relative phase of atomic displacements
on the image considered (§5). A few observations are
also made with respect to the contrast in the intensity
distribution due to scattering from correlated displace-
ments.

2. The lattice potential

Consider a crystal structure which is periodically
deformed relative to a reference structure with
three-dimensional space-group symmetry, according
to a modulation wave, m, with wavevector, q. Define
the reference structure by the set of points
{ﬁij ci=1,...,n atoms, j=1,... unit cells} with
translation vector R, where R;; is the reference position
of atom 7 in unit cell j, and each reference atomic site in a
given unit cell is labelled identically to that site in every
other cell, so that R;; + R, = R;..

The potential, at instant ¢ (f may represent time or be
constant), of this crystal with atomic displacements
hg-m(t) from its reference lattice sites K-j can be given by

VIR, 1) =33 Vi(R) SR — R, —hi"(0], (1)
P
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where R = (x, y, z) is taken from an origin that can be
defined arbitrarily and V;(R) is the potential contributed
by each atom i, independent of its cell.

As a consequence of Bloch’s theorem, the atom i in
each cell has a displacement or polarization vector
function, hji"(r) = A" (Hh}", with the same direction,
h}", and same amplitude, A" (1) = h""(0; + @,,,1), up to
a cell-dependent phase, 6; =R;-q (for example,
Ziman, 1986). It is thus only this cell-dependent phase
that causes VY"(R,t) not to have the translational
symmetry of the reference lattice at any instant ¢. Note
that the amplitude, 4" (6, 4+ ,,,t), can take any peri-
odic form and that q may be either commensurate or
incommensurate with the reference lattice. In the latter
case, the structure at any instant, ¢, will of course not
have three-dimensional translational symmetry.

Provided the atomic displacements are small relative
to the lattice constants of the reference lattice, the
potential may be expanded as a Taylor series in atomic
displacements thus separating out the terms depending
upon f.

VYR, 1) = Z Z ViR — ﬁij)

+ XY (1/a) () - VFVi(R ~ )

i j oa=1

= b(R) + d""(R, 1). )

Here b(R) is the zeroth-order term which is just the
potential of the reference lattice and thus, by definition,
has the translation vector of that lattice. d¥"(R, ¢) is the
sum of the higher-order terms. Although each of these
terms consists of cell- and f-independent partial deri-
vatives of the function, V,(R), located at the reference
lattice sites, ﬁ,j, they are modulated by powers of the
cell-dependent amplitudes, k" (t), and their sum will thus
have the translational symmetry of the actual crystal as
determined by q, at any given instant, ¢.

This potential describes in a general way a crystal with
correlated atomic displacements. If ¢ is a constant, then it
defines a crystal with a modulated structure. If ¢ repre-
sents time, then it can define a crystal with a phonon
mode m and wavevector q.

It is a common and useful approach in diffraction
physics, when estimating the contribution of phonon
scattering to diffracted intensities, to take the time
average of this potential before scattering from it. The
second term (a =2) of the above potential then
becomes the well known Debye-Waller factor.
However, this is an approximation that will not be made
here since it leads to erroneous conclusions about
translational symmetry, the subject of the present work.

In order to consider the intensity distribution in a
high-resolution electron-microscope image of a crystal
with this potential, a coordinate-space multislice
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formulation of electron scattering is first constructed in
the following section.

3. Coordinate-space multislice description of electron
scattering

The elastic scattering of an electron, represented by the
wave function W(R) and a potential V(R), is described
by a Klein—-Gordan equation in the form,

[V* + &% + 2ko VW = 0, (3)

where the interaction constant o = 27wmeA/h?, m is the
relativistic mass of the electron, k is the scalar wave
number with magnitude 27 /A and A is the relativistic
wavelength,

A = h[2mylelW(1 + |e|W /2myc*)] />

with W the accelerating voltage and e and m,, the charge
and rest mass of the electron, respectively.

Define the incident beam to be parallel to the z
direction. For high-energy electrons (W > 10? keV), the
influence of the specimen potential on the z component
of the electron wavefunction is negligible. It is thus
appropriate to extract the principal z dependence
from the wave function via the substitution
W(r, z) = Y(r, 7) expikz, where r=(x,y), and to
neglect #1//9z* to give an equation describing forward
scattering,

r/dz = (i/2k)(V? + 2kaV ), 4)
where
) o & -
r — q.0 +55=
ax?  9y?

This has the form of a two-dimensional ‘time’-depen-
dent Schrodinger equation.

The finite difference form (Feynman, 1948) of this
equation was derived by Cowley & Moodie (1957) using
an argument intuitively based in physical optics,

wn+1 (l‘)
= exp(ikr’/2¢) x { exp [ia anJrE V(r, z) dzi| I/In(r)},
(5)

where

z,t+e
f V(r,z)dz = eV(r, z,) = eV(r, z,,,1) = €V, (1).

Zy
The index n refers to the nth slice, of thickness ¢, of a
crystal partitioned by N two-dimensional phase objects,
eV, (r), separated by vacuum. Equation (5) describes the
wave function at the exit face of the (n + 1)th slice, ¥, ,
in terms of the wave function at the exit face of the nth
slice, ¥,. As ¥, impinges on the (n + 1)th slice, it is
perturbed by the (n + 1)th projected potential, suffering
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a phase change before propagating through the vacuum
via Fresnel diffraction to the exit face of the (n 4 1)th
slice.

In order to elucidate the impact of the modulated
potential, (2), on the wave function, (5), it is helpful to
construct a series expansion in coordinate space of i in
terms of the projected potentials of each slice and their
differentials. To this end, the convolution in (5) is
rewritten in differential form? (Stuart, 1987):

oo

V(@) = [ exp(ikri/2e)
x {explioeV, i (r — 1)), (r — 1)} dr,
= 0/0 exp(ikr? /2e) exp(—r, - V,)

x {explioeV, (0], ()} dr,
= expl(ie/2k) Al{explioeV, (O], ()}.  (6)

In this representation, the kinetic energy (differential)
term describes the diffusion of the wave function as it
propagates across the slice, whilst the potential term
[unchanged from (5)] describes the scattering by the
slice.

[It is noted in passing that equation (6) is an
approximation to the equation

V(1) = ¥(r, 2, + €)
= exp{(i/2K)[A +2kaV, . (D]e}(r, z,),  (7)

which is the solution of the Schrodinger equation, (4),
for a slice for which the potential is independent of z.
This approximation neglects half the second-order and
all the higher-order mixed scattering/propagation terms,
however, the error incurred vanishes with slice thick-
ness.]

Iterating (6), with the incident wave function set equal
to unity, gives

Y(r) = [exp(iﬁsA) exp iEaUn(r)(. ..
... {exp(ile A) exp ileU,(r)
X [exp(ieA)expileU,(r)]} .. )], (8)

where ¢ =1/2k and U, = (2me/h*)V, is a modified
potential.

This gives an exact solution for the wave function in
the limit ¢ - 0, N — oo, Ne — D, where D is the
crystal thickness. Expanding each of the exponentials in
(8) in Taylor’s series gives

1 Stuart (1987) has given a rigorous account of the differential
representation of convolution, which can be summarized as
f(r) * g(r) = f[(i/27)V,] - g(r), where f denotes the Fourier transform
of the function f, defined as f(u) = jfcoo f(r)exp2miu - r)dr.
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l[&‘)a' +B1+..+ay+By

(
=3 > 3 2 1B ay!By!

;=0 ;=0 an=0 By=0
x [A (URY @) A= {UR (x) ...
L AR[UR AT UT ()] )] )

This describes the wave function explicitly as a conse-
cution of scattering and diffusion processes that act
simultaneously in the limit e—0, N—o00, Ne— D. Note
that ¢, and B, are integers only, the subscript n being
used simply as a distinguishing label and not to repre-
sent a dependence upon n. Hereafter, for brevity, the
brackets will not be written explicitly. It should then be
remembered that each A operates on everything to its
right.

This is the wave function at the exit face of the
specimen. The wave function at the image plane, ¢(r)
after perturbation by lens aberrations, can be approxi-
mated by

@(r) = 5(r) * Y(r),

where s(r) is the Fourier transform of the transfer
function S(u) = expix(u) of the microscope. Using the
differential form of convolution, (10) becomes

o(r) = explix[(i/2m)V, ]}¥(r). (11)

This is equivalent to a modulation of the wave function
on the back focal plane of the objective lens by exp i x(u).
Using a typical form for x(u) gives

(10)

expixI(i/2m)V,] = exp L [—f% %+ (5) (VE)Z}

=1 —iftA +[-1(f0) + 2C, ] A7
+ [@/6)(Fe) +2fCe* A + ..

= 3(A), (12)

where f is the defect of focus and C; is the spherical
aberration coefficient of the objective lens. Thus the
wave function at the image plane, ¢(r), is equal to the
wave function at the exit face, ¥(r), operated on by a
polynomial function of A, S(A),

@(r) = S(A)i(r). (13)

It can be seen that the effect of S(A) on the series
expansion of ¥(r) in (9) is to raise the power of the left-
hand differential operator.

4. Translational symmetry of HREM images of crystals
with correlated atomic displacements

4.1. Static displacements — modulated structures

Now consider the wave function due to scattering
from the configuration of atoms in (2) at a given value of
t. So that the argument is not disguised behind a labyr-
inth of indices, consider the simplest case of one atom
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per unit cell. (The argument remains unchanged with
multiatom cells.) Partitioning the crystal with this
potential into slices one atomic layer thick, that is, one
unit cell thick, the modified potential of slice s projected
perpendicular to z will then be

Ur(e,0) =3 Ulr — 1; — " (0)]
J
= Z U(r —1)

+ Y 2 a) A O - VI U - T)

j a=1
= by(r) + d¥"(r, 1),

where b(r) is the reference potential and d¥"(r, t) is the
‘displacement’ potential of slice s. In (14), the indices js
label each unit cell in the crystal;j in the (x, y) plane and
s along the z direction, so that the atomic site in unit
cell js of the reference lattice has position vector
ﬁjs = (¥}, Z,). For simplicity, it is assumed that the atom
in the jth unit cell has the same reference position, F;, in
each slice; that is, ¥; refers to the jth column of atoms
parallel to the beam. (This assumption is readily
generalized and does not alter the argument.)

The component of atomic displacements parallel to
the incident beam is averaged into the projected
potential of the slice so that the direction, h%", of the
displacement vector, h]‘-';" (¢), is now confined to the (x, y)
plane. (The error incurred is negligible. Displacements
parallel to the incident beam have an intrinsically
different effect on the transmitted electron to those
displaced in the plane perpendicular to the beam.
Parallel displacements indirectly influence the propa-
gator, albeit weakly, but do not alter the shape of the
atomic potential, whereas perpendicular displacements
effectively change the shape of the atomic potential but
do not influence the propagator.) The phase of the
displacement vector retains its z dependence and this is
made explicit with the slice index, s, so that

h}'sm(t) = h;'sm(t)h“’" = hqm(ejs + a)qmt)hqm
with

(14)

(15)

ejx = st q= fj : qu +quz'

By substituting the potential (14) into the series
expansion of ¥, (9), and operating with S(A), it is
evident that the wave function at the image plane
consists of configuration (¢)-independent and -depen-
dent parts,

o(r, 1) = @, (r) + 7" (x, 1). (16)

@, (r) is the configuration-independent wave function at
the image plane due to dynamical scattering from the
reference lattice potential, b(R), (2), and has the trans-
lation vector of the reference lattice in this projection
since its terms consist exclusively of the reference slice
potentials, b (r), and their derivatives, that is,
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)0‘1 +h1+..+ay+By

Bl aylBy!

(ite
g0 =5(8) Y —
i

x ANy AT @], (17)
where it must be remembered that each A operates on
everything to its right.

@3"(x, 1) is the correction term to ¢,(r) due to scat-
tering from the tth configuration of atomic displace-
ments from the reference lattice sites.

In the corresponding electron diffraction pattern,
¢,(r) is the component of the wave function that
generates the periodic Bragg intensity peaks whilst
@3"(x, 1) generates the diffuse intensity or superlattice
reflections (depending on q) between the Bragg peaks.

All those scattering processes that consist of scat-
tering from non-displaced atoms only will contribute to
¢,(r). These processes are sometimes referred to as
‘Bragg scattering’. All other scattering processes,
namely those that consist of scattering from one or more
displaced atoms, as well as scattering from the remaining
non-displaced atoms, contribute to 3" (r, r). Processes in
this category are sometimes referred to as ‘diffuse
scattering’.

The terms of ¢1"(r,f) may be collated into series
according to the order of the ‘diffuse’ scattering
process,

@i, 1) = @iy (x, 0) + @i (0, 1) + @i () + .
(18)

where @f(r, ) is the contribution to ¢f"(r, ) due to
dynamical scattering from the ‘displacement’ potential,
d¥(x,t), at [ different slices (or depths), s, and dy-
namical scattering from the reference potential, b, (r), in
the other N — I slices (see the mathematical formulation
that follows below). @i (r, 1), i) (r, 1) etc. will be
referred to as the components of the wave function due
to ‘single-diffuse scattering’, ‘double-diffuse scattering’
etc., respectively. (It is emphasized that these compo-
nents each describe dynamical scattering from multiple
slices, with the labels ‘single’, ‘double’ etc. referring only
to the number of these slices at which dynamical diffuse
scattering takes place.) Explicitly,

N
e D) = 3 S(A)D(x, 1), (19)
s=1
where
_ (ibe) Pt ran+hy . N
Dl(r,z)—m;m AT RIRETN [A by @] ...
Bis By

A, A [ (r, )]}
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(ieg)a‘+ﬁ'+"'+a"'+ﬂ"’
b,y = X; 1B anBy]
Brsens Bn
X AAN by @ .. A% b ()]
A% [d¥"(x, 0 A% b, (0] .
A D,])
(iﬂg)a‘+ﬁl+"'+°""+ﬂ""
Dyte.0) = Z 1B anBy]
BisBy
x AN (@, OFY A by
. AYTb, (D)) (20)

and
. N-1 N
wg(z)(rv t) = Z Z S(A)Dss’(rﬂ [)7
s=1 s'=s+1
where, in analogy to D (r, ),
if&‘)al+ﬂl+”'+a‘\'+ﬁ‘”

(
D)= ), 1B anBy]

.0y

BirBn

x { Aoy @I ... A% by ()]
A [d!" (e, O A% by (0]
L ASHb (O] AS[dY (x, )]
A by (0. A O]

so that, for example,

(iﬁg)al+ﬂ]+”‘a’v+ﬁ/v

Dy(r, 1) = _
wWED= 2 G IBT aylBy
Bi By
X A (e, O A by ()
A, AN (r, 07
The higher-order terms, [ > 2, may be similarly

constructed.

It is desirable to separate the ¢-dependent and ¢-
independent components of the wave function and this
paragraph describes the manipulations that achieve this.
The t-dependent amplitude, /" (1), is first detached from
the operator, h?" -V, in the term [d¥"(r, NP (the
displacement potential of the slice, s, one atomic layer
thick, raised to the power, B,) as follows:

Recall that

B,
[d" (e, 0] = { ¥ 21 /a) A" (R - V' U — f/‘)} :

eay)
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Since U(r — ¥,) is a very narrow function localized about
the point 1,

[h*" - VU(r — E)][A" - VU(r —F,)] 22 0

and, hence,

By
@ (x, o))" Z{Z(l/a') A" (DR - VI U(e — r,->}
(22)

is an excellent approximation. The ¢ dependence can
then be separated explicitly by using the multinomial
theorem for large n,

(x,+%+...+x,)

B!

— V1,72 Y
= E X2 x
I "’
ntvtoty,=p 1°72 n

to give

By
[ (x. )} == Z{Z(l/a') WY (R - VI Ue — f;—)}

j la=1
=Z{ Sy
s
o Uit tv,=p; !

x BL/AN ). (n)y!
x [(h" - W) U —F)]"

[ VYU - )]V”} (23)

permitting the ¢ dependence to be separated explicitly in
the wavefunction

@d(u(r n=7> Z IS

Jos=1 By vit..tv,=5

[hﬂm (t)])/l +2y,+...4+ny,

x {S(AW (0}, (24)
where
(ite)" L
js‘ff‘yl( r) = 1y !, nlay ey a !B Lay! Byl
Bis-s By
except B

x (A by ... A% b ()] A%
[ - V) U@ —5)]" ...

[ VYU — )]}
A% by A% b (0])

and the y,, labelling W. ]Sﬁ ,, (1), is shorthand for the set of
values {y1, Vo, - - +» Vo
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Similarly,

MEn=YY > ¥ ¥

1" s=1 s'=s+1 B, By yit+... v, =P

295 +... .
[h;lsm(l)]yl+ Vot...4ny,

Y+ Ava=By
27y
X [h;l’r:f(t)]yl "2 i {S(A)VV;:-ZL}/ J s’ﬁry (l')}
(25)
where
- © = (i@e)ﬁ“ﬂg"/
BB BT (1Ll AL L nlayl)
(izg)al +B1+...+ay+By
oy, Oy al!:Bl! N 'aN!:BN!
BissBy
except B, By
x (AN by .. A% lby @]

A% [0 - V) U(r - F,)]"
(Y V) U — )] A

R0 S ()

A [0 - V) U —F)]" ...
[ V) U —T)] )

A% by ] AN b 0]).

In the above, Wiy (r) is the ‘shape’ of the ‘wavelet’
contributed by the y;th component of f,-order scattering
from displaced atom j in slice s (including scattering, to
all orders, from all other non-displaced atoms in the
crystal). [Ad"(1)] Nt s the ‘amplitude’ of this
‘wavelet’. Note that Wq (r) is necessarily localized in
the vicinity of r; because of the narrowness of U(r — ).

Similarly, Wgﬂ V'S By, ,(r) is the shape of the wavelet
contributed by the y,th component of S,-order scattering
from displaced atom j in slice s and then the y,th
component of B -order scattering from displaced atom
j’ in slice 5" (including scattering, to all orders, from all
other nondisplaced atoms in the crystal).

[h;lsm(t)]yl 42,440y, [h]fl/'s'f(t)]y{ +2¥)+..Any,

is the amplitude of this wavelet. Wg;'; Vil By, (r) is
necessarily localized in the vicinity of F; and T, ‘because
of the narrowness of U(r —¥,) and U(r —¥;/), and will
tend to zero with the distance between j and j.

The wavelet, W/\ 5.y, (T), due to the y;th component of
B,-order scattering at site js has the same shape as that
due to scattering at site Js, W) | (r). This is because
they are only differential functions of U(r) and are
therefore cell, j, and configuration, ¢, independent.
[This remains true after operation by the lens, S(A).]
However, the contribution that each of these wavelets
makes to the wave function, ¢l"(r,t), is weighted
by the cell-dependent displacement amplitudes,
(A" ()] N and [RY ()] respectively,
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so that (pd(l)(r, t), and hence @3"(r, t), will not have the
translational symmetry of the reference lattice. In other
words, for a given order of scattering, the shape of the
wavelet generated by scattering from a displaced atom
at site js (and hence localized about the position T;) is the
same as that generated by scattering from a displaced
atom at site Js (and hence localized about the position
;). However, the amplitude of these wavelets depends
upon the size of the atomic displacement Ay (r) and
h¥"'(1), respectively, at the site at which the diffuse
scattering occurs.

Similarly, for double-diffuse scattering, the wavelet,

;;Zzy] YBe, ,(r), has the same shape as W,Sﬁy IBay (r)
However, 'the contribution that each of these
wavelets makes to the wave function, @3"(r,?), i
weighted by the cell-dependent displacement ampli-
tudes,

[hqum(t)]y' +2yy+..4ny, [hq,”: (t)]y‘, 2y, 4. +ny,
J's

and

[h;]vm ([)] Y20+ Any, [hjq,r:l/ (l)]y{ 2y, +.Any, i

respectively So, the wavefunction, (pd(z)(r t), and hence
4" (r, 1), will not have the translational symmetry of the
reference lattice.

To determine what the translational symmetry of the
final image is, consider the intensity distribution at the
image plane, due to scattering from the configuration
labelled by ¢, VY"(R, t),

19(x, 1) = @™ (x, )
= lo, () + ¢3"(r, O
= lo,®1” + {lgd"(x. D” + 2[R, ()R] " (x, 1)
+ 0, ()39 " (x, D]}

=1,(x) + IJ"(x, 0). (26)

I,(r) = |g,(¥)]* is the intensity distribution due to
scattering from the reference lattice and has the
translation vector of the reference lattice in this
projection. I"(x, ) is the intensity distribution due to
diffuse scattering from the configuration of atomic
displacements labelled by « In order to consider the
translational symmetry of I$"(r, f), and hence I9"(r, 1),
assume, in the first instance, that the electron scatters
diffusely only once in its passage through the crystal,
that is, ¢ (r, 1) = @3 (r, 1) so that I3"(r, 1) = I3/\(r, 1).
[This is a good approximation for crystals less than a
few hundred angstroms thick (Hall & Hirsch, 1965;
Doyle, 1971).] Then, substituting (24) into (26) gives
an explicit expression for I3"(r, t):
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where y and I' are shorthand for y;, +2y, 4+ ...+ ny,
and I'y 4+ 2T", 4 ... 4+ nl',, respectively. The expressions
in the curly brackets of (27) are cell- and t-independent
waveforms which are functions of U(r), localized at the
given reference lattice site, labelled by j, in the plane
projected perpendicular to the electron beam ¥;. These
functions are modulated according to q by cell-depen-
dent amplitudes,

[h"O) = [A*"(F; - 4y + 2,0 + @gu)],

so that the contribution to the intensity distribution,
I%')(r, t) at r from the cell-independent functions loca-
lized at ¥, is given different weight to the contribution
from the same functions localized at ¥;,. The difference
between these weights for diffuse scattering at a given
depth, s, depends only on gq,,, the component of the
wavevector in the plane perpendicular to the beam, and
does not depend on g, the component parallel to the
beam. (The weights and hence the intensity distribution
do of course depend on ¢q,, however, their dependence is
independent of atomic column, j, so that g, influences
the intensity distribution with the periodicity of the
reference lattice.)

The difference between weights ensures that the
intensity distribution in the image does not have the
translational symmetry of the reference lattice but will
be modulated relative to the reference lattice with a
‘wavevector’ that depends in some way upon q,,. In
order to consider the translational symmetry of the
intensity distribution in the image, consider the standard
case of a cosine form for the displacement vector func-
tion,

B (1) o cos(F; - q,, 4 Z,q, + @y,t) = cos(0 + @,1),

then
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[As an aside, note here that the standard ‘damping
function’, describing the damping of correlations
between atomic displacements with distance, has delib-
erately been left out of the discussion since it does not
alter the argument but does add to the visual complexity
of the equations. (Only the form of the displacement
amplitude is considered, hence the proportional sign.)
The damping function perpendicular to the beam is
insignificant to the argument because, as will be
described later, the intensity distribution in the HREM
image only depends upon the correlations between
atoms in the same or adjacent columns. The range over
which the displacements are correlated perpendicular to
the beam is therefore not important for the issues in this
paper. The damping function parallel to the beam will
have an effect on the quantitative intensity distribution
of the image but does not affect the translational
symmetry discussed in this paper.]

The translational symmetry of the image depends
upon the nature of the dependence of I (1)(r t) on q.-
From (28), it can be seen that different sets of terms in
(27) contribute an intensity distribution with a different
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dependence on q,,. The second term (the interference
between the single-diffuse scattered wavelets) and the
large third term (the interference term between the
wave function due to ‘Bragg’ scattering and the wave
function due to single-diffuse scattering) both consist of
terms that contribute an intensity distribution that is
modulated according to a ‘wavevector’ that is some
integer multiple of q,, (28). Whilst the large first term
[the incoherent (i.e. interference-free) sum of the single-
diffuse scattered wavelets] comprises terms that each
contribute an intensity distribution that is modulated
with a ‘wavevector’ that is some integer multiple of 2q,,,.
Since the smallest effective ‘wavevector’ contributed by
any set of terms in (27) is q,,, the ‘wavevector’ of the
intensity distribution of the image as a whole, I9"(x, 1), is
q,,- In other words, the translational symmetry of the
image is such that the only translations that leave the
image invariant are those lattice translations, p, of the
reference structure satistying p - q,, = 27m with m an
integer. Thus, the two-dimensional intensity distribution
I%"(x,t) has the same translational symmetry as the
modulated structure projected onto the plane perpen-
dicular to the beam, as determined by q,,. That is, the
intensity distribution at the image plane due to scat-
tering from the configuration of atoms V¥"(r, z, ) has
the translational symmetry of V9"(r,t). The argument
follows similarly for double and higher-order diffuse
scattering terms, all of which contribute an intensity
distribution that is modulated with a ‘wavevector’ that is
some integer multiple of q,,.

If a crystal has static correlated atomic displacements
from its periodic lattice sites, then each incident electron
will experience the same configuration, V¥(r, z, ), and
will give rise to the same intensity distribution, 19"(x, t,),
for all of the exposure time. This gives the intuitive
result that the high-resolution electron-microscope image
of a crystal with static correlated atomic displacements
from its reference lattice sites will have the translational
symmetry of the modulated structure in the plane
perpendicular to the incident beam, as determined by q,,,
the component of the modulation wavevector in that
plane.

It is important to note that this result derives entirely
from upper-layer interactions, that is, dynamical scat-
tering into or out of higher-order Laue-zone (HOLZ)
reflections (regardless of whether the HOLZ reflections
are included explicitly within the objective aperture or
not). Put another way, this result is a consequence of the
fact that the differential operators do not commute, so
that Wy, (r) # Wi, (r) and the wave function arising
from scattering from a displaced atom depends on the
depth of that atom in the atomic column parallel to the
beam. If this were not the case, that is, if the projection
approximation were valid [Wig (1) = Wi (r)], then
the phase-dependent weights, hﬂ , in (27) could be
summed over depth, s, independently of the wavelets,

Wis (), with the result that all terms in (27) but the
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second term would lose their phase dependence. In
addition, the second term, the term describing the
interference between waves scattered diffusely from
different sites in the crystal, would depend only upon the
relative phase between the diffusely scattering sites, so
that the image as a whole would have the translation
vector of the reference lattice. It is therefore only the
upper layer interactions that convey information on the
translational symmetry of the modulated structure to
the intensity distribution.

Care must therefore be taken if making approxima-
tions in the calculation of the image of a crystal with a
modulated structure, as many approximations lead to
the calculation of images with incorrect translational
symmetry. An obvious example is the random-phase
approximation, which ignores the correlations between
displaced atoms and so would generate a calculated
image with the translational symmetry of the reference
lattice. Another example is that just described, the
projection approximation, which would also generate an
image with the translational symmetry of the reference
lattice. No diffuse scattering or superlattice reflections
would therefore be present in the Fourier transform of
images calculated using these approximations. The
diffuse scattering or superlattice reflections that register
in the Fourier transform of the experimental image are
thus, in a sense, a measure of the invalidity of these and
other approximations (see §4.3).

4.2. Time-dependent displacements — phonons

Now consider an electron impinging on a crystal with
time-dependent correlated atomic displacements. The
interaction time of the electron with the lattice is
negligible compared with the period of oscillation, t;, of
the atoms. Thus each electron effectively interacts with
a static lattice with an instantaneous configuration,
V¥(R, t), labelled by ¢ In other words, since the phonon
energy (<107!eV) is negligible compared with the
energy of the incident electron (10> keV), energy
exchange between the electron and the lattice can be
neglected. [Wang (1992) has shown explicitly that this is
a valid approximation up to temperatures just above
room temperature.] In this approximation then, the fnal
intensity distribution recorded on the photographic
plate due to scattering from phonon mode qm, after
exposure time 7 >> 1, can be treated as the sum of the
individual intensity distributions due to elastic scattering
from each of these instantaneous configurations. That is,

19 (r) = (1" (x, 1))
= 1,(r) + (13" (x, 1))

= 1,(r) + lim (1/7) }Igm(f, nde.  (29)

Taking the time average of [ d(l)(r, 1) in (27) gives
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where the time averages for the standard -case,
B (1) o< cos(6), + @y, t), are given by
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and where 6, — 60,y = (R, —R5)-q is the relative
phase of the atoms in cells js and JS.

It is immediately evident that the first and third terms
in (30) have the periodicity of the reference lattice when
it is noted that the time averages are constants that
depend only on the integers y =y, +2y, +... +ny,
and the order of the expansion of the phase-object
transmission function in the diffusely scattering slice, B,
(since v+, + ...+ v, =B,). They are completely
independent of j and s and hence the unit cell since the
cell-dependent phase of the displacement amplitude
vanishes in the time averaging. Classically, this is a
statement that the starting position of each atom
becomes irrelevant in the final intensity distribution of
the image, which is taken over an exposure time many
times the period of oscillation of the atoms. Thus the
functions |S(A)W¥7 (r)*> and

JsBsvi
{Ne, OR[S(A)WTy, (0] + I, (I[S(A) Wiy, (0]}
contribute to the intensity distribution with weights

22V(2y> and 2y<1y ),
14 2V

(30)

{[Ag"(OF)
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respectively, independent of the unit cell, j, at which they
are centred. The first and last terms in (30) therefore
have the translational symmetry of the reference lattice
in the plane perpendicular to the beam.

The second term of (30) represents the interference
between the diffusely scattered wavelets generated from
different atomic sites in the crystal. It can be seen that, in
general, the time average, ([hy" ()] [R5 (0], yields a
constant that depends not only on B, and B¢ but also on
the relative phase of the atomic displacements at the
diffusely scattering sites, 6, — 6, = (R, —Ryg) - q.

Since the choice of ongln is arbltrary, 0 — 055 and
hence ([h" ()] [hjs "(1)]") do not depend on the absolute
positions of the columns j and J. Explicitly, if / is an
integer,

ejs - QJS = (f/ - f/) ! qu + (Zs - ZS)qz
= [(f +1,) — (¥, +1p)] - q,, + (z,
I q, + (z, — z9)q,

—25)q,

( H—I

=0,

j+.s (31)

91+[,S

so that
([ OV TR O1) = (R OF R, (O

Thus, the second term in (30) has the periodicity of the
reference lattice in that projection since the term, in
curly brackets, due to interference between the diffusely
scattered waves generated at site js and at site JS is
multiplied by the same constant, ([a3"(1)]” R (0],
the term due to interference between waves generated
at sites j+ 1,5 and J + 1, S, ([, (OV[A}7}, 5(0]"). Thus
the lattice image of a crystal with time-dependent phase-
correlated atomic displacements from the reference
lattice due to mode gm has the translation vector of the
reference lattice in the plane perpendicular to the inci-
dent beam under the approximation of single-diffuse
scattering.

The argument may be continued for double-diffuse
scattering. The contribution to the image by double-

diffuse scattering, I%)(r 1)), is given by
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The first of the four terms in (32) is the incoherent sum
(i.e. without interference) of the double-diffuse scat-
tered wavelets generated at the pair of sites (js, j’s’) and
depends on the relative phase of these two sites.
The second term represents the interference between
double-diffuse scattered waves generated at different
pairs of sites, (js, j's’) and (JS, J'S’), and depends on the
relative phases within each pair (for example 6, — 6,,/)
and between the pairs (for example 6, — 0;5). The third
term represents the interference between a double and a
single-diffuse scattered wave and depends on the rela-
tive phases within the pair and between each site within
the pair and the single-diffuse scattering site. (It is noted
that this term vanishes with the time average, under the
approximations a =1, f,, B, =1 and the assumption
that the displacements take the standard cosine form.)
The last term represents the interference between the
wave function due to scattering solely from the refer-
ence lattice and each double-diffuse scattered wave and
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depends on the relative phase of the two sites at which
the double-diffuse scattered wave is generated. Just as
with single-diffuse scattering, the contribution to the
intensity from double-diffuse scattering depends on the
relative phases of the diffusely scattering sites. Since
these relative phases are translationally invariant, the
intensity distribution contributed by the double-diffuse
scattered waves also has the periodicity of the reference
lattice in that projection. The argument follows similarly
for higher-order diffuse scattering terms. Thus, the
contribution to the image of a crystal with time-depen-
dent atomic displacements due to the lattice mode
qm, 1%(r), has the translational symmetry of the refer-
ence lattice in the plane perpendicular to the incident
beam, that is, /9" (r) = IY"(r + r,), where R, = (x, z,).

Since different lattice modes may be considered
uncorrelated, the final intensity of the lattice image is
the incoherent sum of the contributions from each of the
different phonons (Doyle, 1969), that is,

I(r) = ¥ 19 (x). (33)
qm

Each I%"(r) has the periodicity of the reference lattice so
I(r) must have the periodicity of the reference lattice,
that is, the high-resolution electron microscope image of a
crystal with time-dependent correlated atomic displace-
ments from its reference-lattice sites will have the trans-
lational symmetry of the reference lattice in the projection
perpendicular to the incident beam.

4.3. Comparison of images with static and time-dependent
correlated displacements

It has been demonstrated in the sections above that
the periodicity of the HREM image of a crystal with
static atomic displacements, as in a modulated structure,
is different to that with time-dependent displacements,
as generated by phonons. The former has the periodicity
determined by the modulation wave in that projection
whereas the latter has the periodicity of the reference
lattice. This is the intuitive idea behind the extremely
useful experimental method described by Van Tendeloo
& Amelinckx (1986) for distinguishing whether struc-
tured diffuse scattering in electron diffraction patterns is
temporal or spatial in origin from the Fourier transform
of the corresponding high-resolution image. If the
displacements are static, then the HREM image will
have the translational symmetry of the modulated
structure in that projection and so the transform will
exhibit structured diffuse scattering with the same
geometry as the electron diffraction pattern. If the
displacements are time dependent, then the HREM
image will have the translational symmetry of the
reference lattice so the Fourier transforms will exhibit
Bragg peaks only. In performing this experiment, care
must be taken to:
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(a) Ensure the lattice image is taken with minimal
beam convergence to avoid convolution effects. The
degree of beam convergence and its effect on the
structure of diffuse scattering is of course readily
checked by taking a diffraction pattern using the same
illumination conditions as applied to the lattice image.

(b) Use the largest possible objective aperture to
maximize the number of diffusely scattered electrons
contributing to the image.

(c) Take the optical diffraction pattern from
approximately the same region of crystal (as recorded in
the lattice image) as the selected-area diffraction pattern
was taken from.

5. Dependence of HREM image on phase correlations
between atomic displacements

The expressions constructed above were formulated in
order to analyse the translational symmetry of the image
of a crystal with correlated atomic displacements. All of
the terms that depend upon the correlations between
the atomic displacements were included in these
expressions, however small, so that the argument would
be made without approximation. Some of the phase-
correlation terms are, however, very small and it is the
purpose of this section to consider the nature and extent
of their influence on the image using the formulation
constructed above.

5.1. Static displacements — modulated structures

The intensity distribution in high-resolution images of
modulated structures depends on the wavevector
defining the correlations between the displaced atoms.
The intensity distribution due to diffuse scattering, (27),
depends upon the absolute phase of the displacement at
each atomic site. As a result, the total intensity distri-
bution is modulated according to the wavevector of the
modulated structure in that projection, as discussed in
§4.1. However, those terms that have a dependence on
phase in the intensity distribution are small. Such terms
consist of wavelets (in the curly brackets), all of which
have the same shape, independent of column, j, that are
multiplied by a weight that has a sinusoidal dependence
upon the absolute phase of the displaced atom(s)
at the site(s) at which the diffuse scattering has taken
place. Since these weights will be as often positive as
negative along the depth of a column and since
W ()~ Wi, () [although WY (1) W, (1)
in general], the sum over all the weighted wavelets along
the column will be small.

Although these terms are small, they are nevertheless
significant enough for the modulation of the image
intensity distribution they generate to be readily
detectable experimentally. For example, as mentioned in
§4.3, the intensity modulation is usually sufficiently
strong to give rise to diffuse scattering or superlattice
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reflections corresponding to q,, in the Fourier transform
of the image (Van Tendeloo & Amelinckx, 1986), even
for thin crystals (there is a thin-crystal example in
Etheridge, 1996).

5.2. Time-dependent displacements — phonons

For the case of phonons, the final intensity distribu-
tion in the high-resolution image can be treated, as in
§4.2, as a normalized sum of the intensity distributions
due to each of the ‘static’ modulated structures that
represent the dynamic structure at every point in its
cycle. As a consequence of this sum, information on the
phase of atomic displacements is lost from the large
single-diffuse scattering ‘non-interference’ term [first
term of (30)] because it gives the contribution from each
atom, summed over every point of its individual cycle,
independent of the position of other atoms. [By ‘non-
interference’ terms it is meant the incoherently summed
terms; the first terms of (30) and (32).] In other smaller
terms, some information on the phase of atomic
displacements is still retained, for example, those terms
describing the interference between the wavefunctions
of electrons that have been scattered diffusely at
different sites in the crystal, either one or more times
[for example, the second term of (30) and the last three
terms of (32)], or those terms describing the contribu-
tion from direct multiple diffuse scattering [e.g. the first
term of (32)], where the electron wavefunction is tagged
by the phase of each of the displaced atoms from which
it has been diffusely scattered. The nature and signifi-
cance of the phase dependence of each of these terms is
considered one by one below.

5.2.1. Single-diffuse scattering. The contribution to
the total intensity distribution made by phase-corre-
lation terms in the single-diffuse scattering expression
(30) are first considered. The function W;f’;;y(r) is
sharply localized about the column j, so that in a high-
resolution image S(A)Wiy (r) is unlikely to extend
much beyond adjacent atomic columns. Thus, the
major contribution in the summation over j and J in
the phase-dependent term of (30) (the second half of
the second term) will be that due to interference
between wavelets generated by diffuse scattering at
different depths in the same column, that is j =J. A
small contribution will also be made by wavelets
generated by diffuse scattering in adjacent columns
but all other terms will be negligible. The single-
diffuse scattering intensity therefore depends on the
relative phase between all pairs of atoms within a
single atomic column and, to a lesser extent, in
adjacent columns, but does not depend on any other
pairs.

The size of the phase-dependent term of (30) (the
second half of the second term) is in any case small,
since cos(y — 2k)(¢;, — 0;5) will be just as often positive
as negative across the range of values of 6 — 65, so that
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the sum over the length of the columns (i.e. over s, S)
will be small. Therefore, the phase dependence of the
single-diffuse scattered intensity is small but non-zero.

5.2.2. Double-diffuse scattering.

(a) First and fourth terms. Now consider the contri-
bution of double-diffuse scattering, (32). The first and
fourth terms correspond to the electron that has
scattered diffusely at depth s in column j and then
later at depth s’ in column j’ in its passage through
the crystal, generating the V\'Iavelet mﬁ:’gw,x,ﬂl,y,(r). The
first term represents the incoherent sum of these
wavelets whilst the fourth represents its interference
with the wavefunction generated by scattering from
the reference lattice. Wi, ;1s,,(F) will be localized
about the positions j and j’, having maximum
amplitude when j = j’, and rapidly tending to zero the
further j is from j'. The phase-dependent component
of these terms will therefore depend predominantly
on the relative phase between atoms in the same
atomic column, j = j’, and, to a much lesser extent, on
atoms in adjacent columns.

As with single-diffuse scattering, the size of these
phase-dependent terms (the second part of each of these
terms) is small, since they both have a cosine depen-
dence on 6, — 6, and will be just as often positive as
negative across the range of values of 6, — 6,,, so that
the sum over the length of the columns (i.e. over s, s’)
will be small. That is, the phase-dependent part of the
first and fourth terms will be small (but again non-zero).

(b) Second term. The second term in (32) arises from
the interference between different pairs of double-
diffuse scattered wavelets, js,j’s’ and JS,J'S. Since
these wavelets will only have a significant amplitude
when j =/’ or j,j' are nearest neighbours and J =J’
or J,J' are nearest neighbours, respectively, their
product will only have a large amplitude when
j=j =J=J, with smaller contributions for the
cases when j and j' are adjacent or equal to each
other, at the same time as J and J' are adjacent or
equal to each other, at the same time as at least one
of j and j’ is adjacent or equal to J or J'. In other
words, this term depends predominantly on the rela-
tive phases between pairs of atoms in the same
column and to a much lesser extent on the relative
phases between pairs of atoms in adjacent columns.

The phase-dependent component of the amplitude
(32) multiplying the second term will again be small
because there are many depth-dependent components
in the second term that are positive as there will
be negative, so that the overall contribution of the
components with a depth dependence will be small.

(¢) Third term. The third term in (32) arises from the
interference between single-diffuse scattered wavelets
from sites JS and double-diffuse scattered wavelets from
the pair of sites, js, j's’. Since the single-diffuse scattered
wavelets are localized about site J and the double-
diffuse scattered wavelets will only have significant



156

amplitude when j=j’ or j,j are nearest neighbours,
their product will only have a large amplitude when
j =j' = J, with smaller contributions for the cases when
jand j’ are adjacent or equal to each other, at the same
time as J is adjacent or equal to j or j'. So, like the other
terms, this term depends predominantly on the relative
phases between pairs of atoms in the same column and
to a much lesser extent on the relative phases between
pairs of atoms in adjacent columns.

The phase-dependent component of the amplitude
(32) multiplying the third term will again be small
because there are as many depth-dependent compo-
nents in the second term that are positive as there will
be negative, so that the overall contribution of the
components with a depth dependence will be small.

(d) Summary. In summary, the intensity distribution
due to scattering from a phonon mode depends in a
small way upon the relative phase between pairs of
displaced atoms, provided the pairs are either within the
same atomic column or in adjacent columns. The
strongest dependence is on pairs in the same column.

The terms that depend upon correlations between
atoms in a plane perpendicular to the beam will influ-
ence the intensity between the reference lattice posi-
tions whilst the terms that depend upon correlations
between atoms within the same atomic column parallel
to the beam will mostly influence the intensity at the
reference-lattice positions. The phase-correlation terms
therefore contribute in a specific way to the intensity
distribution and do not simply contribute a featureless
background that does not affect the image contrast. It
can also be seen from the discussion above that this is
the case even for single-diffuse scattering. [This is
contrary to the suggestion of Wang (1992), although
Wang’s qualitative argument vividly describes the
inherent difference between the dependence of images
and diffraction patterns on the correlations between
atomic displacements.]

It can be seen by inspection that an image of a
crystal with time-dependent correlated displacements
has a smaller, as well as different, dependence on the
phase correlations between displacements than the
image of a crystal with equivalent static correlated
displacements.

For the case of phonon scattering, the smallness of
these phase-correlation terms means that, to a crude
approximation, a random-phase model can be used for a
qualitative assessment of the contribution of thermal
diffuse scattering to the image [Cowley (1988) has
shown this is exactly true for single-diffuse scattering
under a type of column approximation where the wave
function is independent of the depth in the column of
a displaced atom, assuming a weak-phase-object ap-
proximation for the diffusely scattering slice and
ignoring multiple scattering from a single lattice wave],
however, for quantitative work, phase correlations
should be included.
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6. Contrast in the intensity distribution due to scattering
from correlated atomic displacements

There has been some discussion about the effect of
phonon scattering on contrast in the intensity distribu-
tion in a HREM image. [For example Cowley (1988),
Rez (1993) and Wang (1992). Each of these references
addresses the question using different formulations
and different degrees of approximation.] This discussion
has also had some bearing on the interpretation of
HAADF-STEM (high-angle annular dark field-scan-
ning transmission electron microscope) images, since
phonon scattering can make a significant contribution to
such images. Whilst it is not the principal aim of the
present work, it is worthwhile using the different
formulation set up here to consider the resolution and
contrast in the intensity distribution generated by scat-
tering from correlated atomic displacements. For
brevity, the argument that follows is made for the case of
scattering from dynamic displacements (phonons) only.
It can readily be seen that an analogous argument
applies to scattering from static displacements (modu-
lated structures) but the effects are much weaker.

Firstly, for comparison, consider the intensity distri-
bution due to scattering from a lattice only, without
atomic displacements. In analogy with I3"(r, ), (30),
I,(r) can be written as

1,(r) = |, ()
=3 ﬁZ{|S(A>W,-ﬁJ(r)|2}
+ X X AIS(A)W MIS(A) W, (0] ),

) By:Bs
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As with Ij‘("f) (r, 1), (30), I, (r) has been separated here into
an incoherently summed contribution (the sum of the
square of each wavelet), which is the first term, plus the
remaining sum over the terms describing the inter-
ference between different wavelets, which is the second
term. Similarly to I57)(r, ), the component of the
potential, U(r —T,), and hence the wavelet W (r), is
highly localized about the position ¥;, so the first term
tends to give intensity peaks localized about the refer-
ence lattice sites whilst the second term gives intensity
peaks in between the reference lattice sites. In this

formulation, it is the second term, the interference term,
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that generates two of the well established characteristics
of lattice resolving images, namely:

(i) the possibility of obtaining significant intensity
peaks in between atomic sites;

(i) the possibility of reversal of contrast with change
in the focal length of the objective lens.

This section considers briefly the extent to which
these characteristics are present in the intensity distri-
bution arising from scattering from the correlated
displacements, I$"(r, t), or, in other words, how large the
interference term is, both relative to the incoherently
summed term as well as in an absolute sense.

6.1. Relative magnitude of the interference term — atomic
contrast

In the image due only to scattering from the reference
lattice, I,(r), (34), the incoherently summed term and
the interference term contribute with the same ‘weight’,
that is, there are no multiplicative factors outside the
curly brackets. However, in the contribution to the
image due to scattering from the displacement potential,
I¥"(x, 1), (30) and (32), the incoherently summed term
and the interference term contribute with different
weights, which depend in different ways upon the
amplitudes of the atomic displacements in each case.
Consider the relative magnitude of these factors for the

case of [ (1)(1’ 1),
2y
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The factors multiplying the incoherently summed
terms are significantly greater overall than those multi-
plying the interference terms. This means that the rela-
tive intensity between the incoherently summed term
and the interference term is greater for I "(r, ¢) than it is
for I,(r). That is, for I3"(r,t), the intensity between
atomic sites will be considerably diminished relative to
that at the atomic sites. The ‘first characteristic’ is
therefore a less significant effect in 1 "(r, #) than I,(r).
As a consequence, the intensity distribution due to
scattering from the displacement potential will have
sharper atomic contrast than that due to scattering from
the reference potential without displacements. The
argument can be followed similarly for double-diffuse

scattering.
It was demonstrated by Cowley (1988), within
the phase-object approximation, that scattering

from a displacement potential approximated by
> 1OV, U(r — 1) gives enhanced resolution (‘sharper
atom images’) relative to scattering from the non-
displaced atomic potential because of the narrower
peaks of V,.U(r —r1,) compared with U(r —,). The
suppression of the interference terms in dynamical
scattering from the full displacement potential described
here represents an additional resolution-enhancing
effect with different physical origins, deriving not from
the shape of the scattering function but from the peri-
odic nature of the displacement amplitudes.

6.2. Absolute magnitude of interference term — contrast
reversal

It can be seen from (35) that the absolute value of the
interference term between two diffuse scattered wave-
lets is very small. Half of the wavelets in curly brackets
are multiplied by a zero factor (corresponding to either
of the gammas being odd). A further quarter are only
multiplied by the sinusoidally dependent term (which
when summed along a column gives a very small
contribution, as described in §5).

Similarly, the interference term between a diffuse
scattered wavelet and the reference wavefunction is
small since half of the factors are zero (corresponding to
gamma odd). In fact, if the weak-phase-object approxi-
mation is made for the transmission function of the
diffusely scattering atomic layer, that is 8, = 1, and only
single scattering from a given displacement potential is
considered, a = 1, then this term vanishes completely.

The smallness of the two interference terms in (30)
(the second and third terms) means that the contribu-
tion to the image from scattering from a phonon mode is
dominated by the incoherently summed first term. Since

S(A) and Wy (r) are contained within the modulus of
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this term, the contribution to the image due to scattering
from the dynamic atomic displacements will not exhibit
strong contrast reversal with change in defect of focus or
thickness.

The argument has been spelt out explicitly here for
single-diffuse scattering but can be readily extended to
double-diffuse scattering.

6.3. Summary

In summary, as a consequence of the periodic nature
of the displacement amplitude, the contribution to a
HREM image from the interference terms owing to
dynamical scattering from correlated atomic displace-
ments is both small relative to the incoherently summed
term and small in absolute terms. The former means that
the intensity between the atomic sites will tend to be
depressed relative to that at the atomic sites, enhancing
the image contrast, and the latter means that contrast-
reversal effects will be weaker. The argument has been
set out only for time-dependent atomic displacements.
Analogous arguments can be made for the scattering
from modulated structures, although the interference
terms in this case are larger and so the effects are not as
strong as for scattering from phonons.

7. Conclusions

A coordinate-space multislice formulation of electron
scattering has been constructed that describes dynamical
scattering as sums of non-commuting products of kinetic
and potential energy terms, without the integral opera-
tion of convolution. It is used to analyse high-resolution
electron-microscope images of crystals with correlated
atomic displacements that are either static (as gener-
ated, for example, in modulated structures) or dynamic
(as generated by phonons) and, in particular, to deter-
mine the translational symmetry and the dependence
upon the correlations between atomic displacements of
these images.

From the formulation, expressions can be constructed
that describe multiple scattering from displaced and
nondisplaced atoms. These expressions comprise a
component describing multiple scattering from a perfect
reference potential without displacements and a
component describing multiple scattering from a
displacement potential. Expressions are given explicitly
for the contribution to the latter component from single-
and double-diffuse scattering events embedded between
multiple Bragg scattering events.

It is shown that the intensity distribution due to
scattering from correlated atomic displacements
depends upon the wavevector defining the correlations
between these displacements, although the dependence
is greater and different in nature for static displacements
than for dynamic displacements. Both the components
of the wavevector perpendicular, q,,, and parallel, q,, to
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the incident beam influence the intensity distribution
but their influence manifests itself in different ways, with
q,, mostly affecting the intensity distribution between
the reference sites and q, mostly affecting it at the
reference sites.

The lattice image of static correlated atomic dis-
placements depends upon the absolute phase of the
displacement at each atomic site, whilst that of time-
dependent displacements depends only upon the relative
phase of the displacements at different atomic sites. For
this reason, the lattice image of a crystal with static
correlated displacements, as in a modulated structure,
has the translational symmetry of the modulated struc-
ture in that projection, as determined by the component
of the modulation wavevector perpendicular to the
incident beam, whereas the lattice image of a crystal
with dynamic correlated displacements, as generated by
phonons, has the translational symmetry of the crystal’s
reference structure in that projection (the reference
structure being that from which the displacements are
measured and which determines the three-dimensional
space-group symmetry of the crystal). The Fourier
transform of the lattice image of a modulated structure
will therefore exhibit structured diffuse scattering with a
wavevector determined by the modulation wavevector
of the crystal in that projection whereas the transform of
the lattice image of a crystal with phonon-induced
displacements will exhibit Bragg peaks only. This means
that it can be possible to distinguish whether structured
diffuse scattering in electron diffraction patterns is due
to static or time-dependent displacements by deter-
mining whether or not structured diffuse scattering of
the same geometry is present in the Fourier transform of
the corresponding high-resolution image [an experi-
mental method described by Van Tendeloo &
Amelinckx (1986)].

In order to be able to detect the effect of correlated
atomic displacements on the translational symmetry
of an image, it is not necessary to be able to resolve
the <0.1 A displacements directly. The displacement
amplitude of an atom has little effect on the position or
shape of a peak in the intensity distribution but does
affect the amplitude of the peak. The question of being
able to ‘resolve’ the displacements is therefore irrele-
vant. Their dominant effect is to modulate the intensity
of image peaks, rather than to shift the position of the
peak. Therefore, in order to detect their effect on the
crystal’s translational symmetry, it is only necessary to
be able to detect the intensity modulation, it is not
necessary to detect a 0.1 A shift in atomic spacing. This
is well within the capabilities of a microscope resolving
2 A.

For the case of static displacements, the longitudinal
component of the modulation wavevector (that parallel
to the incident beam) influences the intensity distribu-
tion with the periodicity of the reference lattice whereas
the transverse component (that perpendicular to the
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incident beam) influences the intensity distribution with
the periodicity of the modulated structure in that
projection (and fractions thereof). This influence is
communicated solely through scattering into or out of
higher-order Laue-zone (HOLZ) reflections (regardless
of whether the HOLZ reflections are included explicitly
within the objective aperture or not). For this reason,
the intensity distribution is modulated according to the
transverse component of the wavevector of the crystal’s
modulation.

For static displacements, the dependence of the
intensity distribution upon the modulation wavevector is
small but not so small that the modulation of the
intensity generated by its transverse component cannot
be readily detected in the Fourier transform of the
image.

Some approximations to the calculation of scattering
from static correlated displacements can yield calculated
images with the incorrect translational symmetry. For
example, approximations that assume the phase of
atomic displacements is random or approximations that
do not include HOLZ interactions and so ignore the fact
that the intensity contributed by a diffusely scattered
wave depends upon the depth(s) at which the diffuse
scattering took place. Either of these will lead to
calculated images with the translational symmetry of the
reference lattice. The fact that diffuse scattering is
detectable in the Fourier transforms of experimental
images with modulated structures is a measure both of
the significance of the correlations between displaced
atoms and of the importance of the depth at which the
diffuse scattering takes place (HOLZ interactions).

For dynamic displacements, the dependence of the
intensity distribution upon the phonon wavevector is
small but there is nevertheless information contained
within the image about the relative phase of the
displacements of atoms within the same atomic column
parallel to the beam and in adjacent columns perpen-
dicular to the beam (although the extent of the depen-
dence of the latter is much smaller and depends upon
the imaging conditions, the crystal projection and the
amplitude of the atomic displacements). The transverse
component of the wavevector will mostly influence the
intensity distribution between the reference lattice sites
whereas the longitudual component will mostly influ-
ence the intensity distribution at the reference lattice
positions. The phase correlation terms therefore add
structure to the image contrast and do not simply
contribute a homogeneous background.

When scattering from the reference potential, the
contribution due to the interference term is given the
same ‘weight’ as that due to the incoherently summed
term (the sum of the square of the scattered wavelets).
On the other hand, when scattering from the displace-
ment potential (whether static or dynamic), the contri-
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bution due to the interference term is suppressed
relative to that contributed by the incoherently summed
term, that is, the intensity between the reference sites is
suppressed relative to the intensity peaks localized
about the reference sites. The atomic contrast in the
image generated by scattering from the displacement
potential is therefore enhanced relative to that gener-
ated by scattering from the reference lattice. This
improvement in contrast is in addition to that due to
scattering from the ‘sharper’ peaks of the displacement
potential, as described by Cowley (1988). This effect is
much stronger for scattering from phonons than scat-
tering from modulated structures.

As a consequence of the periodic nature of the
displacement amplitude, the absolute value of the
interference terms due to scattering from the displace-
ment potential is also small. This means that the
contribution to the image from scattering from the
displacement potential is dominated by the incoherently
summed term and will therefore not exhibit strong
reversal of contrast with change in defocus or crystal
thickness.

A quantitative treatment of the intensity distribution
will of course require inclusion of the interference terms
but its qualitative behaviour may be considered roughly
as incoherent. The latter is more strongly the case with
phonon scattering than with scattering from a modu-
lated structure.

This work was inspired through discussions with
Professor A. F. Moodie, to whom the author expresses
her considerable gratitude. She also thanks the Royal
Melbourne Institute of Technology, Australia, and
Newnham College, Cambridge, England, for financial
support.

References

Cowley, J. M. (1988). Acta Cryst. A44, 847-855.

Cowley, J. M. & Moodie, A. F. (1957). Acta Cryst. 10, 609-619.

Doyle, P. A. (1969). Acta Cryst. A25, 569-577.

Doyle, P. A. (1971). Acta Cryst. A27, 109-116.

Etheridge, J. (1996). Philos. Mag. A73, 643-668.

Fanidis, C., Van Dyck, D. & Van Landuyt, J. (1992).
Ultramicroscopy, 41, 55-64.

Feynman, R. P. (1948). Rev. Mod. Phys. 20, 367-387.

Hall, C. R. & Hirsch, P. B. (1965). Proc. R. Soc. London Ser. A,
286, 158-177.

Rez, P. (1993). Ultramicroscopy, 52, 260-266.

Stuart, S. N. (1987). Differential Representation of Convolution.
CSIRO, Australia. Unpublished.

Van Tendeloo, G. & Amelinckx, S. (1986). Scr. Metall. 20,
335-339.

Wang, Z. L. (1992). Philos. Mag. B65, 559-587.

Ziman, J. M. (1986). Principles of the Theory of Solids, 2nd ed.
Cambridge University Press.



